+7(499)-938-42-58 Москва
+7(800)-333-37-98 Горячая линия

Какие числа являются натуральными. Натуральные числа – основы

Содержание

Натуральные числа – это какие числа: наглядные примеры наименьшего и множества, свойства и последовательность

Какие числа являются натуральными. Натуральные числа - основы

В математике существует несколько различных множеств чисел: действительные, комплексные, целые, рациональные, иррациональные, дробные… В нашей повседневной жизни мы чаще всего используем натуральные числа, так как мы сталкиваемся с ними при счете и при поиске, обозначении количества предметов….

Какие числа называются натуральными

Из десяти цифр можно записать абсолютно любую существующую сумму классов и разрядов. Натуральными значениями считаются те, которые используются:

  • При счете каких-либо предметов (первый, второй, третий, … пятый, … десятый).
  • При обозначении количества предметов (один, два, три…)

N значения всегда целые и положительные. Наибольшего N не существует, так как множество целых значений не ограничено.

Внимание! Натуральные числа получаются при счете предметов или при обозначении их количества.

Абсолютно любое число может быть разложено и представлено в виде разрядных слагаемых, например: 8.346.809=8 миллионов+346 тысяч+809 единиц.

Множество N

Множество N находится в множестве действительных, целых и положительных. На схеме множеств они бы находились друг в друге, так как множество натуральных является их частью.

Множество натуральных чисел обозначается буквой N. Это множество имеет начало, но не имеет конца.

Еще существует расширенное множество N, где включается нуль.

Наименьшее натуральное число

В большинстве математических школ наименьшим значением N считается единица, так как отсутствие предметов считается пустотой.

Но в иностранных математических школах, например во французской, нуль считается натуральным. Наличие в ряде нуля облегчает доказательство некоторых теорем.

Ряд значений N, включающий в себя нуль, называется расширенным и обозначается символом N0 (нулевой индекс).

Ряд натуральных чисел

N ряд – это последовательность всех N совокупностей цифр. Эта последовательность не имеет конца.

Особенность натурального ряда заключается в том, что последующее число будет отличаться на единицу от предыдущего, то есть возрастать. Но значения не могут быть отрицательными.

Внимание! Для удобства счета существуют классы и разряды:

  • Единицы (1, 2, 3),
  • Десятки (10, 20, 30),
  • Сотни (100, 200, 300),
  • Тысячи (1000, 2000, 3000),
  • Десятки тысяч (30.000),
  • Сотни тысяч (800.000),
  • Миллионы (4000000) и т.д.

Все N

Все N находятся во множестве действительных, целых, неотрицательных значений. Они являются их составной частью.

Эти значения уходят в бесконечность, они могут принадлежать классам миллионов, миллиардов, квинтиллионов и т.д.

Например:

  • Пять яблок, три котенка,
  • Десять рублей, тридцать карандашей,
  • Сто килограммов, триста книг,
  • Миллион звезд, три миллиона человек и т.д.

Последовательность в N

В разных математических школах можно встретить два интервала, которым принадлежит последовательность N:

от нуля до плюс бесконечности, включая концы, и от единицы до плюс бесконечности, включая концы, то есть все положительные целые ответы.

N совокупности цифр могут быть как четными, так и не четными. Рассмотрим понятие нечетности.

Нечетные (любые нечетные оканчиваются на цифры 1, 3, 5, 7, 9.) при делении на два имеют остаток. Например, 7:2=3,5, 11:2=5,5, 23:2=11,5.

Что значит четные N

Любые четные суммы классов оканчиваются на цифры: 0, 2, 4, 6, 8. При делении четных N на 2, остатка не будет, то есть в результате получается целый ответ. Например, 50:2=25, 100:2=50, 3456:2=1728.

Важно! Числовой ряд из N не может состоять только из четных или нечетных значений, так как они должны чередоваться: за четным всегда идет нечетное, за ним снова четное и т.д.

Свойства N

Как и все другие множества, N обладают своими собственными, особыми свойствами. Рассмотрим свойства N ряда (не расширенного).

  • Значение, которое является самым маленьким и которое не следует ни за каким другим – это единица.
  • N представляют собой последовательность, то есть одно натуральное значение следует за другим (кроме единицы – оно первое).
  • Когда мы производим вычислительные операции над N суммами разрядов и классов (складываем, умножаем), то в ответе всегда получается натуральное значение.
  • При вычислениях можно использовать перестановку и сочетание.
  • Каждое последующее значение не может быть меньше предыдущего. Также в N ряде будет действовать такой закон: если число А меньше В, то в числовом ряде всегда найдется С, для которого справедливо равенство: А+С=В.
  • Если взять два натуральных выражения, например А и В, то для них будет справедливо одно из выражений: А=В, А больше В, А меньше В.
  • Если А меньше В, а В меньше С, то отсюда следует, что А меньше С.
  • Если А меньше В, то следует, что: если прибавить к ним одно и то же выражение (С), то А+С меньше В+С. Также справедливо, что если эти значения умножить на С, то АС меньше АВ.
  • Если В больше А, но меньше С, то справедливо: В-А меньше С-А.

Внимание! Все вышеперечисленные неравенства действительны и в обратном направлении.

Как называются компоненты умножения

Во многих простых и даже сложных задачах нахождение ответа зависит от умения школьников умножать.

Для того, чтобы быстро и правильно умножать и уметь решать обратные задачи, необходимо знать компоненты умножения.

15.10=150. В данном выражении 15 и 10 являются множителями, а 150 – произведением.

Умножение обладает свойствами, которые необходимы при решении задач, уравнений и неравенств:

  • От перестановки множителей конечное произведение не изменится.
  • Чтобы найти неизвестный множитель, надо произведение разделить на известный множитель (справедливо для всех множителей).

Например: 15.Х=150. Разделим произведение на известный множитель. 150:15=10. Сделаем проверку. 15.10=150. По такому принципу решаются даже сложные линейные уравнения (если упростить их).

Важно! Произведение может состоять не только из двух множителей. Например: 840=2.5.7.3.4

Что такое натуральные числа в математике?

Разряды и классы натуральных чисел

Вывод

Подведем итоги. N используются при счете или обозначении количества предметов. Ряд натуральных совокупностей цифр бесконечен, но он включает в себя только целые и положительные суммы разрядов и классов. Умножение тоже необходимо для того, чтобы считать предметы, а также для решения задач, уравнений и различных неравенств.

! Легкие правила округления чисел после запятой

Натуральные числа

Какие числа являются натуральными. Натуральные числа - основы

Натуральные числа и различные системы для их обозначения использовались еще в древних цивилизациях: Древнем Междуречье, Древнем Египте, Древнем Китае, в племенах Майя. Понятие числа «ноль», по видимому, появилось позже понятия натуральных чисел в позднем Вавилоне и у Майя.

Замечание 1

В самые древние времена для счета использовали палочки. Такой способ записи сохранился в римском исчислении. Число при такой записи представляло собой сумму или разность палочек, которая была записана без каких-либо знаков.

С развитием систем счисления определенные числа стали обозначать буквами алфавита. В современных системах счисления значение каждой цифры числа определяет ее место в записи числа. Первой такой системой счисления была вавилонская (шестидесятеричная) и индийская (десятичная).

Вариантом индийской десятичной системой счисления является современная арабская система с тем различием, что в индийской системе отсутствовал ноль. Цифру $0$ придумали арабы, после чего система счисления приняла современный вид.

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Для счисления времени используется шестидесятеричная система (за основу взято число $60$): $1$ час содержит $60$ минут, $1$ минута — $60$ секунд.

В работах математика Пьера де Ферма были положены основы теории чисел или высшей арифметики как отдельной науки, которая изучает чистые, формальные свойства натуральных чисел.

Натуральные числа. Множество натуральных чисел

Натуральные числа $1, 2, 3, \dots$ используются для счёта (одна груша, две груши, три груши и т.д.) или для указания порядкового номера предмета среди ему подобных.

Натуральные числа принято записывать с помощью арабских цифр: $0, 1, 2, 3, 4, 5, 6, 7, 8, 9$.

Рисунок 1.

Определение 1

Натуральные числа (или естественные числа) — числа, которые возникают естественным образом при подсчете чего-либо.

Пример 1

Натуральными будут числа: $3, 48, 157, 1089, 25556$.

Если выстроить все натуральные числа в порядке их возрастания, то получим натуральный ряд.

Для определения натуральных чисел существует два подхода:

  1. Числа, которые возникают при подсчете (нумерации) предметов (например, первый, второй и т.д.).

  2. Числа, которые используют для обозначения количества предметов (нет стула, один стул, два стула и т.д.).

При первом подходе натуральный ряд начинается с единицы, при втором — с нуля.

Математики не пришли к единому выводу считать ли ноль натуральным числом. В большинстве российских источников традиционным является первый подход. Второй подход широко используется в программировании (например, при индексации массивов, нумерации битов машинного кода и т.д.).

Замечание 2

К натуральным числам не относятся ни отрицательные, ни нецелые числа.

Определение 2

Множество всех натуральных чисел обозначается $N=\left\{1,\ 2,\ 3,\ 4,\ \dots ,\ n,\ \dots \right\}$ и характеризуется своей бесконечностью, т.к. для любого натурального числа $n$ существует натуральное число, которое будет большее $n$.

Пример 2

Какие из чисел являются натуральными?

\[-6;\ \ 5;\ \ 0,6;\ \ \ \frac{1}{2};\ \ \ \sqrt[3]{5};\ \ 38;\ \ \ -38;\ \ 12,5;\ \ 4.\]

Ответ: $5;\ \ 38;\ \ \ 4.$

При формулировке и доказательстве многих теорем арифметики натуральных чисел удобно использовать и ноль, поэтому при первом подходе применяется понятие расширенного множества натуральных чисел, которое содержит ноль и обозначается $N_0$ или $Z_0$.

Ноль как натуральное число

В русской литературе принято исключать нуль из числа натуральных чисел ($0otin N$), а множество натуральных чисел с нулём обозначают $N_0$.

В международной математической литературе множество $\left\{1,\ \ 2,\ \ 3,\ \dots \right\}$ принято называть множеством положительных целых чисел и обозначать $Z+$. Множество $\left\{0,\ \ 1,\ \ 2,\ \dots \right\}$ принято называть множеством неотрицательных целых чисел и обозначать $Z{\ge 0}$.

Чтобы прочитать натуральное число, нужно выполнить следующие действия:

  1. Разбить число справа налево на группы из $3$ цифр.

  2. Прочитать слева направо по очереди группы из $3$ цифр и добавить название класса.

  3. Название класса пропускают, если в группе цифр все нули.

Рисунок 2.

Каждую цифру класса называют разрядом класса.

Меньшим натуральным числом является то, которое при проведении подсчета используется раньше. Например, число $9$ меньше $20$ (записывается $9 55$.

Аксиомы Пеано для натуральных чисел

Множество $N$ будем называть множеством натуральных чисел, если зафиксирован некоторый элемент единица $1\in N$ и функция следования $S:N\to N$ так, что выполнены следующие условия:

  1. $1\in N$: единица является натуральным числом.

  2. Если $x\in N$, то $S\left(x\right)\in N$: Если число — натуральное, то следующее число за ним тоже натуральное}.

  3. $exists x\in N\ \left(S\left(x\right)=1\right)$: Не существует натурального числа, которое находится перед единицей}.

  4. Если $S\left(b\right)=a$ и $S\left(c\right)=a$, тогда $b=c$: Если натуральное число $a$ следует за числом $b$ и за числом $c$, то $b=c$.

  5. Аксиома индукции. Пусть $P\left(n\right)$ — некоторый одноместный предикат, который зависит от натурального числа $n$. Тогда:

Если $P\left(1\right)$ и $\forall n\left(P\left(n\right)\Longrightarrow P\left(S\left(n\right)\right)\right)$, то $\forall n\ P\left(n\right)$:

Если некоторое высказывание $P$ верно для $n=1$ и для любого $n$ из истинности $P\left(n\right)$ следует истинность $P\left(n+1\right)$, то $P\left(n\right)$ верно для любого натурального $n$.

Все аксиомы отражают представление о натуральном ряде и числовой линии.

Теоретико-множественное определение натуральных чисел (определение Фреге–Рассела)

По теории множеств единственным объектом конструирования любых математических систем является множество.

Таким образом, исходя из понятия множества натуральные числа вводятся по двум правилам:

  • $0=\emptyset $
  • $S\left(n\right)=n\cup \left\{n\right\}$
  • Заданные таким образом числа называются порядковыми или ординальными.

Описываются первые порядковые числа и натуральные числа, которые им соответствуют, следующим образом:

  • $0=\emptyset $
  • $1=\left\{0\right\}=\left\{\emptyset \right\}$
  • $2=\left\{0,\ \ 1\right\}=\left\{\emptyset ,\ \ \left\{\emptyset \right\}\right\}$
  • $3=\left\{0,\ \ 1,\ \ 2\right\}=\left\{\emptyset ,\ \ \left\{\emptyset \right\},\ \ \left\{\emptyset ,\ \ \left\{\emptyset \right\}\right\}\right\}$

Что такое натуральное число

Какие числа являются натуральными. Натуральные числа - основы
Определение

Натуральными числами называются числа, которые используются при счете или для указания порядкового номера предмета среди однородных предметов.

Например. Натуральными будут такие числа: $2,37,145,1059,24411$

Натуральные числа, записанные в порядке возрастания, образуют числовой ряд. Он начинается с наименьшего натурально числа 1.Множество всех натуральных чисел обозначают $N=\{1,2,3, \dots n, \ldots\}$. Оно бесконечно,так как не существует наибольшего натурального числа. Если к любому натуральному числу прибавить единицу, то получаем натуральное число,следующее за данным числом.

Пример

Задание. Какие из следующих чисел являются натуральными?

$$-89 ; 7 ; \frac{4}{3} ; 34 ; 2 ; 11 ; 3,2 ; \sqrt[3]{129} ; \sqrt{5}$$

Ответ. $7 ; 34 ; 2 ; 11$

На множестве натуральных чисел вводится две основные арифметические операции -сложение иумножение.Для обозначения этих операций используются соответственно символы ” + “ и” • “ (или ” × “).

Сложение натуральных чисел

Каждой паре натуральных чисел $n$ и $m$ ставится в соответствие натуральное число $s$, называемое суммой. Сумма$s$ состоит из стольких единиц, сколько их содержится в числах $n$ и $m$. О числе$s$ говорят, что оно получено в результате сложения чисел $n$ и $m$, и пишут

$$n+m=s$$

Числа $n$ и $m$ называются при этом слагаемыми. Операция сложения натуральных чисел обладает следующими свойствами:

  1. Коммутативность: $n+m=m+n$
  2. Ассоциативность: $(n+m)+k=n+(m+k)$

Подробнее о сложении чисел читайте по ссылке.

Пример

Задание. Найти сумму чисел:

$13+9 \quad$ и $ \quad 27+(3+72)$

Решение. $13+9=22$

Для вычисления второй суммы, для упрощения вычислений, применим к ней вначале свойство ассоциативности сложения:

$$27+(3+72)=(27+3)+72=30+72=102$$

Ответ. $13+9=22 \quad;\quad 27+(3+72)=102$

Умножение натуральных чисел

Каждой упорядоченной паре натуральных чисел $n$ и $m$ ставится в соответствие натуральное число$r$, называемое их произведением. Произведение $r$ содержит стольких единиц, сколько их содержится в числе$n$, взятых столько раз, сколько единиц содержится в числе $m$. О числе$r$ говорят, что оно получено в результате умножения чисел $n$ и $m$, и пишут

$n \cdot m=r \quad $ или $ \quad n \times m=r$

Числа $n$ и$m$ называются множителями или сомножителями.

Операция умножения натуральных чисел обладает следующими свойствами:

  1. Коммутативность: $n \cdot m=m \cdot n$
  2. Ассоциативность: $(n \cdot m) \cdot k=n \cdot(m \cdot k)$

Подробнее о умножении чисел читайте по ссылке.

Пример

Задание. Найти произведение чисел:

12$\cdot 3 \quad $ и $ \quad 7 \cdot 25 \cdot 4$

Решение. По определению операции умножения:

$$12 \cdot 3=12+12+12=36$$

Ко второму произведению применим свойство ассоциативности умножения:

$$7 \cdot 25 \cdot 4=7 \cdot(25 \cdot 4)=7 \cdot 100=700$$

Ответ. $12 \cdot 3=36 \quad;\quad 7 \cdot 25 \cdot 4=700$

Операция сложения и умножения натуральных чисел связаны законом дистрибутивности умножения относительно сложения:

$$(n+m) \cdot k=n \cdot k+m \cdot k$$

Сумма и произведение любых двух натуральных чисел всегда есть число натуральное, поэтому множество всех натуральных чиселзамкнуто относительно операций сложения и умножения.

Так же на множестве натуральных чисел можно ввести операциивычитания иделения, как операции обратные к операциямсложения и умножения соответственно. Но эти операции не будут однозначно определенны для любой пары натуральных чисел.

Свойство ассоциативности умножения натуральных чисел позволяет ввести понятие натуральной степени натурального числа:$n$-й степенью натурального числа $m$ называется натуральное число$k$, полученное в результате умножения числа $m$ самого на себя $n$ раз:

Для обозначения $n$-й степени числа $m$ обычно используется запись: $m{n}$, в котором число$m$ называется основанием степени, а число $n$ – показателем степени.

Пример

Задание. Найти значение выражения $2{5}$

Решение. По определению натуральной степени натурального числа это выражение можно записать следующим образом

$$2{5}=2 \cdot 2 \cdot 2 \cdot 2 \cdot 2=32$$

Ответ. $2{5}=32$

Читать дальше: что такое рациональное число.

Классы натуральных чисел

Каждая цифра натурального числа выражает определенный разряд. Самая последняя – это всегда количество единиц в числе, предыдущая перед ней – количество десятков, третья от конца – количество сотен, четвертая – количество тысяч и так далее.

Пример:

  • в числе 276: 2 сотни, 7 десятков, 6 единиц
  • в числе 1098: 1 тысяча, 9 десятков, 8 единиц; разряд сотен здесь отсутствует, поскольку выражен нулем.

Для больших и очень больших чисел можно увидеть устойчивую тенденцию (если исследовать число справа налево, то есть от последней цифры к первой):

  • три последних цифры в числе – это единицы, десятки и сотни;
  • три предыдущие – это единицы, десятки и сотни тысяч;
  • три стоящие перед ними (т.е.7-я, 8-я и 9-я цифры числа, считая от конца) – это единицы, десятки и сотни миллионов и т.д.

Итак:

  • 4-й класс, следующий за классом миллионов и представляющий собой числа из 10-12 цифр, называется миллиард (либо биллион);
  • 5-й класс – триллион;
  • 6-й класс – квадриллион;
  • 7-й класс – квинтиллион;
  • 8-й класс – секстиллион;
  • 9-й класс – септиллион.

Вычитание натуральных чисел

При переходе к сложению вычитаемое и разность превращаются в слагаемые, а уменьшаемое – в сумму. Сложением обычно проверяют правильность выполненного вычитания, и наоборот.

Пример:

74–18=56

Здесь 74 – уменьшаемое, 18 – вычитаемое, 56 – разность.

Обязательным условием при вычитании натуральных чисел является следующее: уменьшаемое обязательно должно быть больше вычитаемого. Только в этом случае полученная разность тоже будет натуральным числом. Если действие вычитания осуществляется для расширенного натурального ряда, то допускается, чтобы уменьшаемое было равно вычитаемому. И результатом вычитания в этом случае будет 0.

Пример:

21–21=0

Примечание: если нулю равно вычитаемое, то операция вычитания не изменяет величины уменьшаемого.

Пример:

38–0=38

Вычитание многозначных чисел обычно производят в столбик. Записывают при этом числа так же, как и для сложения. Вычитание выполняется для соответствующих разрядов.

Если же оказывается, что уменьшаемое меньше вычитаемого, то берут единицу из предыдущего (находящегося слева) разряда, которая после переноса, естественно, превращается в 10.

Эту десятку суммируют с цифрой уменьшаемого данного разряда и после этого производят вычитание. Далее при вычитании следующего разряда обязательно учитывают, что уменьшаемое стало на 1 меньше.

Пример:

Произведение натуральных чисел

Действие умножение незаменимо при необходимости складывать большое количество слагаемых. Например, если нужно число 4 прибавить 7 раз, то перемножить 4 на 7 проще, нежели выполнять такое сложение: 4+4+4+4+4+4+4.

Числа, которые перемножают, называются множителями, результат умножения – произведением. Соответственно, термин «произведение» может в зависимости от контекста выражать собой как процесс умножения, так и его результат.

Многозначные числа перемножают в столбик. Для этого числа записывают так же, как и для сложения и вычитания. Рекомендуется первым (выше) записывать то из 2-х чисел, которое длиннее. В этом случае процесс умножения будет более простым, а следовательно, более рациональным.

При умножении в столбик выполняют последовательное умножение цифры каждого из разрядов второго числа на цифры 1-го числа, начиная с его конца. Найдя первое такое произведение, записывают цифру единиц, а цифру десятков держат в уме.

При умножения цифры 2-го числа на следующую цифру 1-го числа к произведению прибавляют ту цифру, которую держат в уме. И снова записывают цифру единиц полученного результата, а цифру десятков запоминают.

При умножении на последнюю цифру 1-го числа полученное таким способом число записывают полностью.

Результаты умножения цифры 2-го разряда второго числа записывают вторым рядом, сместив его на 1 клетку вправо. И так далее. В итоге будет получена «лесенка». Все получившиеся ряды цифр следует сложить (по правилу сложения в столбик). Пустые клетки при этом нужно считать заполненными нулями. Полученная сумма и есть конечное произведение.

Примеры:

Деление натуральных чисел

Число, которое делят, называют делимым; число, на которое делят, – делителем; результат деления называется частным. Знаком деления является «:» (иногда, реже – «÷»).

Пример:

48:6=8

Здесь 48 – делимое, 6 – делитель, 8 – частное.

Не все натуральные числа можно поделить между собой. В этом случае выполняют деление с остатком. Заключается оно в том, что для делителя подбирается такой множитель, чтобы его произведение на делитель было бы числом, максимально близким по значению к делимому, но меньшим него.

Делитель умножают на этот множитель и вычитают его из делимого. Разность и будет остатком от деления. Произведение делителя на множитель называют неполным частным.

Внимание: остаток обязательно должен быть меньше подобранного множителя! Если остаток больше, то это означает, что множитель подобран неверно, и его следует увеличить.

Пример:

38:7

Подбираем множитель для 7. В данном случае это число 5. Находим неполное частное: 7·5=35. Вычисляем остаток: 38-35=3. Поскольку 3

Класс миллиардов

Если взять десять сотен миллионов, то получим новую разрядную единицу — один миллиард или в записи цифрами.

1 000 миллионов = 1 000 000 000 = 1 млрд

Десять таких единиц — десять миллиардов, десять десятков миллиардов образуют следующую единицу — сто миллиардов.

Запомните!

Миллиарды, десятки миллиардов и сотни миллиардов образуют четвёртый класс — класс миллиардов.

Разряды и классы натурального числа

Рассмотрим натуральное число 783 502 197 048

Название класса

Название разряда

Цифра (символ)

МиллиардыМиллионыТысячиЕдиницы
Сотни миллиардовДесятки миллиардовМиллиардыСотни миллионовДесятки миллионовМиллионыСотни тысячДесятки тысячТысячиСотниДесяткиЕдиницы
783502197048
Название класса

Название разряда

Цифра (символ)

МиллиардыМиллионыТысячиЕдиницы
Сотни миллиардовДесятки миллиардовМиллиардыСотни миллионовДесятки миллионовМиллионыСотни тысячДесятки тысячТысячиСотниДесяткиЕдиницы
783502197048

C помощью таблицы разрядов прочитаем это число. Для этого надо слева направо по очереди называть количество единиц каждого класса и добавлять название класса.

Название класса единиц не произносят, также не произносят название класса, если все три цифры в его разрядах — нули.

Теперь прочтем число 783 502 197 048 из таблицы: 783 миллиарда 502 миллиона 197 тысяч 48.

Числа 1, 10, 100, 1000… называются разрядными единицами. С их помощью натуральное число записывается в виде разрядных слагаемых. Так, например, число 307 898 будет выглядеть в виде разрядных слагаемых.

307 898 = 300 000 + 7 000 + 800 + 90 + 8

Проверить свои вычисления вы можете с помощью нашего калькулятора разложения числа на разряды онлайн.

Следующие за миллиардом классы названы в соответствии с латинскими наименованиями чисел. Каждая следующая единица содержит тысячу предыдущих.

  • 1 000 миллиардов = 1 000 000 000 000 = 1 триллион («три» — по латыни «три»)
  • 1 000 триллионов = 1 000 000 000 000 000 = 1 квадриллион («квадра» — по латыни «четыре»)
  • 1 000 квадриллионов = 1 000 000 000 000 000 000 = 1 квинтиллион («квинта» — по латыни «пять»)

Все числа пересчитать невозможно, поскольку за каждым числом следует число на единицу большее, но очень большие числа в повседневной жизни не нужны.

Однако, физики нашли число, которое превосходит количество всех атомов (мельчайших частиц вещества) во всей Вселенной.

Это число получило специальное название — гугол. Гугол — число, у которого 100 нулей.

Понятие о натуральном числе

Какие числа являются натуральными. Натуральные числа - основы

Чтобы сосчитать некоторое количество предметов, используются числа, которые называют натуральными.

С помощью десяти цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 можно записать любое натуральное число. (подобным образом мы используем буквы алфавита, чтобы записать слова)

Такую запись числа называют десятичной ‒десять единиц каждого разряда состав­ляют одну единицу следующего старшего разряда.  

Натуральный ряд

Если натуральные числа записать в порядке возрастания, то получится ряд натуральных чисел  ‒  натуральный ряд.

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,20, …

Каждое число в этом ряду меньше последующего на единицу. Наи­меньшее число среди натуральных чисел — это 1, а наибольшего числа нет.

Многозначные числа

Натуральное число называют однозначным, если его запись состоит из одного знака — одной цифры.

Например, числа 3, 7, 9 — однозначные.

Если запись числа состоит из двух знаков — двух цифр, то его называют двузначным.

Например, числа 25, 44, 65, 80 — двузначные.

Числа 100, 543, 888  — трёхзначные:

Числа 2000, 6791, 1060 — четырёхзначные и т. д.

Двузначные, трехзначные, четырёхзначные, пятизначные и т. д. —  это многозначные числа.

Классы и разряды

Прочитать записи однозначных, двузначных и трехзначных чисел (например: 7, 54, 976) затруднений не вызывает.

Чтобы прочесть многозначное натуральное число, его необходимо разбить справа налево на группы по три цифры в каждой. Крайняя левая группа может состоять из одной или двух цифр.

Эти группы называют классами.

Три первые цифры спра­ва ‒ это класс единиц, три следующие — класс тысяч, затем класс миллионов, класс миллиардов и т. д.

Место, занимаемое цифрой в записи числа, назы­вают разрядом.

Если считать справа налево, то первое место в за­писи числа называют разрядом единиц, второе — разрядом десятков, третье — разрядом сотен и т. д.

Например, в числе 5034 имеем 4 единицы разряда единиц, 3 единицы разряда десятков, 0 единиц раз­ряда сотен и 5 единиц разряда тысяч.

Можно также сказать, что в классе единиц 34 единицы.

Названия некоторых больших чисел

1 тысяча (1 тыс.) – 1 000 (тысяча)

1 миллион (1 млн)1 000 000 (тысяча тысяч)

1 миллиард (1 млрд)1 000 000 000  (тысяча миллионов)

1 триллион (1 трлн) – 1 000 000 000 000 (тысяча миллиардов)

Рассмотрим  число 6 000 126 754.

Его читают: 6 миллиардов 126 тысяч семьсот пятьдесят четыре.

В классе миллионов во всех разрядах стоят нули. Поэтому при чтении числа 6 000 126 754 не произносят название этого класса.

Примеры прочтения чисел:

а) Число 200 700 читается так: двести тысяч семьсот;

б) Число 6 000 008 читается так: шесть  миллионов восемь;

в) Число 14 000 002 000 читается так: четырнадцать миллиардов две тысячи.

Значение цифры в записи числа

Значениецифры зависит от её позиции(места) в записи числа.

Например, в записи числа 56 978 цифра 8 означает 8 единиц, так как она стоит на последнем месте в записи числа (в разряде единиц);

В записи числа 42 389 цифра 8 означает 8 десятков, так как она стоит на предпоследнем месте в записи числа (в разряде десятков);

В записи числа 5 300 847 цифра 8 означает 8 сотен, так как она стоит на третьем месте от конца в записи числа (в разряде сотен).

Число 0 и цифра 0

Число 0 натуральным не является.

Цифра 0 означает отсутствие единиц данного разряда в десятичной записи числа. Она служит и для обозначения числа «нуль» (что означает ‒ «ни одного»).

(Например, счёт 1 : 0 хоккейного матча говорит о том, что вторая команда не забила ни одной шайбы в ворота противника.)

Поделись с друзьями в социальных сетях:

Советуем посмотреть:

Сложение натуральных чисел

Вычитание натуральных чисел

Умножение натуральных чисел

Деление натуральных чисел

Порядок выполнения действий

Степень числа. Квадрат и куб числа

Меньше или больше

Меньше или больше на сколько? во сколько раз?

Формулы

Уравнения

Натуральные числа и действия над ними

Правило встречается в следующих упражнениях:

5 класс

Задание 12, Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Упражнение 4, Мерзляк, Полонский, Якир, Учебник

Упражнение 5, Мерзляк, Полонский, Якир, Учебник

Упражнение 18, Мерзляк, Полонский, Якир, Учебник

Упражнение 157, Мерзляк, Полонский, Якир, Учебник

Упражнение 3, Мерзляк, Полонский, Якир, Учебник

Упражнение 184, Мерзляк, Полонский, Якир, Учебник

Упражнение 192, Мерзляк, Полонский, Якир, Учебник

Упражнение 262, Мерзляк, Полонский, Якир, Учебник

Упражнение 337, Мерзляк, Полонский, Якир, Учебник

6 класс

Задание 47, Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 127, Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 137, Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 193, Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 194, Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 196, Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 262, Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 293, Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 407, Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 409, Виленкин, Жохов, Чесноков, Шварцбург, Учебник

© budu5.com, 2020

Пользовательское соглашение

Copyright

Нашли ошибку?

Связаться с нами

Конспект

Какие числа являются натуральными. Натуральные числа - основы

Ключевые слова конспекта: Натуральные числа. Арифметические действия над натуральными числами. Делимость натуральных чисел. Простые и составные числа. Разложение натурального числа на простые множители. Признаки делимости на 2,  3,  5,  9,  4,  25,  10, 11. Наибольший общий делитель (НОД), а также наименьшее общее кратное (НОК). Деление с остатком.

Множество натуральных чисел обозначают N. Запись «3 ∈ N» означает, что число три принадлежит множеству натуральных чисел, а запись «0 ∉ N» означает, что число нуль не принадлежит этому множеству.

Десятичная система счисления — позиционная система счисления по основанию 10.

Арифметические действия над натуральными числами

Для натуральных чисел определены следующие действия: сложение, вычитание, умножение, деление, возведение в степень, извлечение корня.  Первые четыре действия являются арифметическими.

Пусть a, b и c — натуральные числа, тогда

1. СЛОЖЕНИЕ. Слагаемое + Слагаемое = Сумма

Свойства сложения1. Переместительное а + b = b + а.2. Сочетательное а + (b + с) = (а + b) + с.

3. а + 0= 0 + а = а.

2. ВЫЧИТАНИЕ. Уменьшаемое — Вычитаемое = Разность

Свойства вычитания1. Вычитание суммы из числа а — (b + с) = а — b — с.2. Вычитание числа из суммы  (а + b) — с = а + (b — с);   (а + b) — с = (а — с) + b.3. а — 0 = а.

4. а — а = 0.

3. УМНОЖЕНИЕ. Множитель * Множитель = Произведение

Свойства умножения1. Переместительное а*b = b*а.2. Сочетательное а*(b*с) = (а*b)*с.3. 1 * а = а * 1 = а.4. 0 * а = а * 0 = 0.

5. Распределительное (а + b) * с = ас + bс;   (а — b) * с = ас — bс.

4. ДЕЛЕНИЕ. Делимое : Делитель = Частное

Свойства деления1. а : 1 = а.

2. а : а = 1.   Делить на ноль нельзя!

3. 0 : а= 0.

Порядок действий

1. Прежде всего действия в скобках.2. Потом умножение, деление.

3. И только в конце сложение, вычитание.

Делимость натуральных чисел. Простые и составные числа.

Делителем натурального числа а называется натуральное число, на которое а делится без остатка. Число 1 является делителем любого натурального числа.

Натуральное число называется простым, если оно имеет только два делителя: единицу и само это число. Например, числа 2, 3, 11, 23 — простые числа.

Число, имеющее более двух делителей, называется составным. Например, числа 4, 8, 15, 27 — составные числа.

Признак делимостипроизведения нескольких чисел: если хотя бы один из множителей делится на некоторое число, то и произведение делится на это число. Произведение 24 • 15 • 77 делится на 12, поскольку множитель этого числа 24 делится на 12.

Признак делимости суммы (разности) чисел: если каждое слагаемое делится на некоторое число, то и вся сумма делится на это число. Если а : b и c : b, то (а + c) : b. А если а : b, а c не делится на b, то a + c не делится на число b.

Если а : c и c : b, то а : b. Исходя из того, что 72 : 24 и 24 : 12, делаем вывод, что 72 : 12.

Представление числа в виде произведения степеней простых чисел называют разложением числа на простые множители.

Основная теорема арифметики: любое натуральное число (кроме 1) либо является простым, либо его можно разложить на простые множители только одним способом

При разложении числа на простые множители используют признаки делимости и применяют запись «столбиком» В таком случае делитель располагается справа от вертикальной черты, а частное записывают под делимым.

Например, задание: разложить на простые множители число 330. Решение:

Признаки делимости  на  2,  5,  3,  9,  10,  4,  25  и  11.

Существуют признаки делимости на 6, 15, 45 и т. д., то есть на числа, произведение которых можно разложить на множители 2, 3, 5, 9 и 10.

Наибольший общий делитель 

Наибольшее натуральное число, на которое делится нацело каждое из двух данных натуральных чисел, называется наибольшим общим делителем этих чисел (НОД).   Например, НОД (10; 25) = 5;   а НОД (18; 24) = 6;    НОД (7; 21) = 1.

Если наибольший общий делитель двух натуральных чисел равен 1, то эти числа называются взаимно простыми

Алгоритм нахождения наибольшего общего делителя (НОД)

НОД часто используется в задачах. Например, между учениками одного класса поделили поровну 155 тетрадей и 62 ручки.

Сколько учеников в этом классе?

Решение: Нахождение количества учащихся этого класса сводится к нахождению наибольшего общего делителя чисел 155 и 62, поскольку тетради и ручки поделили поровну.  155 = 5 • 31; 62 = 2 • 31. НОД (155; 62) = 31.

Ответ: 31 ученик в классе. 

Наименьшее общее кратное

Кратным натурального числа а называется натуральное число, которое делится на а без остатка. Например, число 8 имеет кратные: 8, 16, 24, 32, …  Любое натуральное число имеет бесконечно много кратных.

 Наименьшее общее кратное (НОК) называется наименьшее натуральное число, которое кратно этим числам.

Алгоритм нахождения наименьшего общего кратного (НОК):

НОК также часто применяется в задачах. Например, два велосипедиста одновременно стартовали по велотреку в одном направлении. Один делает круг за 1 мин, а другой — за 45 с.

Через какое наименьшее количество минут после начала движения они встретятся на старте?

Решение: Количество минут, через которое они снова встретятся на старте, должно делиться на 1 мин,, а также на 45 с. В 1 мин = 60 с. То есть необходимо найти НОК (45; 60).

45 = 32 • 5;
60 = 22 • 3 • 5.
НОК (45; 60) = 22 • 32 • 5 = 4 • 9 • 5 = 180.
В результате получается, что велосипедисты встретятся на старте через 180 с = 3 мин.

 Ответ: 3 мин.

Деление с остатком

Если натуральное число а не делится нацело на натуральное число b, то можно выполнить деление с остатком. В таком случае полученное частное называется неполным. Справедливо равенство:

 а = b • n + r,

где а — делимое, b — делитель, n — неполное частное, r — остаток. Например, пусть делимое равно 243, делитель — 4, тогда 243 : 4 = 60 (остаток 3). То есть а = 243, b = 4, n = 60, r = 3, тогда 243 = 60 • 4 + 3.

Числа, которые делятся на 2 без остатка, называются четнымиа = 2n, n N.

Остальные числа называются нечетнымиb = 2n + 1, n N.

Это конспект по теме «Натуральные числа. Признаки делимости». Чтобы продолжить, выберите дальнейшие действия:
Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.